Numerical Modeling of Soil-Pile Axial Load Transfer Mechanisms in Granular Soils

Sofia Costa D’Aguiar

Under the supervision of:
Prof. Arézou Modaressi
Prof. Jaime Santos

1 - Ecole Centrale Paris, France
Laboratoire MSSMAT
2 - Instituto Superior Técnico, Portugal

15/01/2009
Statement of the Problem

\[Q_T = Q_s + Q_b \]

Pile resistance mobilization

Shaft resistance:

\[Q_s = \int_0^L \int_0^{2\pi} \tau_f r \, d\theta \, dz \]

Base resistance:

\[Q_b = \int_0^{2\pi} \int_0^R (\sigma_v) r \, dr \, d\theta \]

Berezantzev et al. (1961)
Statement of the Problem

Depends on:
- Nature of soil
- Initial soil conditions:
 - Initial state (undisturbed soil)
 - Installation effects
 - Residual loads
- Pile-soil Interface (Shaft)
 Relative movements for resistance mobilization
- Type of loading
 (Monotonic, cyclic, static or dynamic)
- Time effects

\[Q_T = Q_s + Q_b \]

Pile resistance mobilization

Berezantzev et al. (1961)
I – Introduction

Background and Motivations

CONVENTIONAL DESIGN METHODS

- Predictions:
 - Theoretical solutions, Empirical methods
 - Broad range of predictions; Low reliability

IC 50 prediction event
Dunkirk sand (Jardine et al. [2005])

ISC2 prediction event
Porto residual soil (Santos et al. [2005])
Background and Motivations

CONVENTIONAL DESIGN METHODS

- Predictions:
 - Theoretical solutions, Empirical methods
 - Broad range of predictions; Low reliability

NEEDS

- Improve predictive methods: economies
- Understanding of all interaction mechanisms (installation and loading)
- Reliable and rational design method
Objectives (challenges)

- Improve the knowledge of the load transfer mechanism
- 3D numerical modeling of Pile-Soil Interface and soil behavior
- Determine load settlement response (base and shaft) to axial loads of non-displacement piles
- Contribute to the understanding of some of the installation effects:
 - Soil stress history
 - Residual loads
 - Friction fatigue
- Apply the model to an in-situ case study

Berezantzev et al. (1961)
Short Outline

I - Introduction
II - Theory formulation and Numerical modeling
III - Soil-Structure Interface behavior
IV - Non-displacement Piles in Toyoura sand
V - ISC’2 Experimental site
VI - Final remarks
Short Outline

I - Introduction
II - Theory and Numerical modeling
III - Soil-Structure Interface behavior
IV - Non-displacement Piles in Toyoura sand
V - ISC’2 Experimental site
VI - Final remarks
• Numerical Tools
 – GEFDYN FEM code [Aubry et al 1986]
 – SDT / Matlab post-processing

• ECP Elastoplastic Constitutive Models
 • Multimecanisms model “ECP” or “Huieux” model,
 (2D and 3D)
 [Aubry et al. 1982, Hujeux 1985]
 • Interface model, [Aubry et al. 1990]
 (2D)
 (1D)

• 3D Axisymmetric formulation of the Multimecanisms model
• 3D Interface model

Newly implemented
Employed and developed Tools

- **ECP elastoplastic Constitutive models:**
 - **Theoretical principles:**
 - Effective stress principle;
 - Incremental plasticity;
 - Critical state concept;
 - Mohr Coulomb type failure criterion;
 - Deviatoric primary yield surface of the k plane (3 planes):

\[
 f_k(\sigma, \varepsilon_p^e, r_k) = q_k - \sin \phi_{pp}^l \cdot p'_k \cdot F_k \cdot r_k
\]

\[
 F_k = 1 - b \ln \left(\frac{p_k'}{p_c} \right) \quad p_c = p_{co} \exp(\beta \varepsilon_p^o) \quad \varepsilon_p^o = \sum_{k=1}^{3} (\varepsilon_{p_{iso}}^p) + (\varepsilon_{p_{iso}}^p)
\]

- Isotropic yield surface:
 \[
 f_{iso} = |p'| - d p_c r_{iso}
 \]

- Progressive mobilization of shear:
 \[
 r_k = r_{cl}^k + \frac{\int_0^t \varepsilon_p^e \, dt}{a + \int_0^t \varepsilon_p^e \, dt} \quad a = a_1 + (a_2 - a_1) \alpha_k(r_k)
 \]

- Roscoe’s dilatancy law
II – Theory and Numerical modeling

Employed and developed Tools

• **3D Axisymmetric** formulation of the ECP multimechanisms model:

 Induced anisotropy depends on the choice of the deviatoric mechanisms planes direction

3D CV shear test (axisymmetric conditions)

\[\varepsilon^p_v = \sum_{k=1}^{3} \left(\varepsilon^p_{vh,k} + (\varepsilon^p_i)_{iso} \right) \]
• **3D Axisymmetric formulation of the multimechanisms model:**

Induced anisotropy depends on the choice of the deviatoric mechanisms planes direction

3D CV shear test (axisymmetric conditions)

Deviatoric mechanisms:
Transformation of three orthogonal planes:

- q_{rx}, p_{rx}
- q_{rz}, p_{rz}
- q_{yz}, p_{yz}

New formulation

Induced anisotropy depends on the choice of the deviatoric mechanisms planes direction.
II – Theory and Numerical modeling

Employed and developed Tools

• 3D ECP Interface

Hypotheses:
- Isotropy in the sliding plane:
\[
\tau = \tau_s \cdot \overrightarrow{e_s} + \tau_t \cdot \overrightarrow{e_t}
\]

- The tangential flow rule of the sliding plane:
\[
\dot{u}_\tau^P = \lambda^P \cdot \Psi_\tau
\]
\[
\Psi_\tau = \frac{\partial f}{\partial \tau}
\]

- The normal plastic displacement rate variation:
\[
\dot{u}_n^P = \dot{\lambda}^P \cdot \Psi_n
\]
I - Introduction
II - Theory and Numerical modeling
III - Soil-Structure Interface behavior
 • Background
 • Strategy for parameters’ identification
 • Simulation of direct shear tests
 • Calibration of ECP interface model
IV - Non-displacement Piles in Toyoura sand
V - ISC’2 Experimental site
VI - Final remarks
III – Interface behavior

Background

• Soil-Structure Interface behavior depends on:

 Pile nature
 - \(R_t \) pile surface roughness
 - \(R_n \) - Normalized surface roughness \(\frac{R_t}{D_{50}} \) [Uesugi & Kishida 1986]

 Soil nature
 - \(D_{50} \) soil grain size
 - \(\sigma_{n0} \) initial normal stress
 - \(D_r \) initial relative density

 Soil initial state
 - \(t \) - interface layer thickness

 Boundary conditions
 - Shear tests:
 - CNL - Constant normal load
 - CV - Constant volume
 - CNS - Constant normal stiffness
III – Interface behavior

Strategy for parameters’ identification

- Boundary conditions, CV, CNS, CNL
- Initial normal stress, σ_{no}
- Initial relative density
- Type of loading
- Interface layer thickness, t
- Normalized roughness, R_n

Similitude with soil behavior
Uesugi et al. [1988], Boulon and Nova [1990] …

ECP soil model parameter’s identification strategy
(extensively studied at ECP)
(Hicher & Rahma [1994]... Kordjani [1995]...
Lopez [2003]...)
Strategy for parameters’ identification

- Boundary conditions, CV, CNS, CNL
- Initial normal stress, σ_{no}
- Initial relative density
- Type of loading
 - Interface layer thickness, t
 - Normalized roughness, R_n

Similitude with soil behavior

Uesugi et al. [1988], Boulon and Nova [1990] …

Taken into account implicitly in the parameters
Simulation of Direct Shear Test

- **Boundary conditions, CV, CNS, CNL**
- **Initial normal stress, \(\sigma_{no} \)**
- **Initial relative density**
- **Type of loading**
- **Interface layer thickness, \(t \)**
- **Normalized roughness, \(R_n \)**

Observation

<table>
<thead>
<tr>
<th>Observation</th>
<th>(t)</th>
<th>Controlling parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi-steady state</td>
<td>Shifting for lower (u_s)</td>
<td>(r(\dot{u}_d^p) = \dot{r}^{ed} + \frac{\dot{u}_d^p}{\dot{\theta} + \dot{u}_d^p})</td>
</tr>
<tr>
<td>Dilatancy at the critical state</td>
<td>Reduction</td>
<td>(\sigma_c = \sigma_{co} \exp(\beta \dot{u}_d^p))</td>
</tr>
<tr>
<td>Elasticity</td>
<td>Domain reduction</td>
<td>(G_{1}^{\uparrow} = \frac{G}{t})</td>
</tr>
<tr>
<td>Friction angle at the critical state</td>
<td>Unaffected</td>
<td>--</td>
</tr>
</tbody>
</table>

- **FEM model (solid element)**
- **CNL shear test: (ECP multimechanisms)**
 - \(\sigma_{no}=100 \text{ kPa} \)

- **Graphs**
 - \(\tau_s \text{ (kPa) - Shear stress} \)
 - \(u_s \text{ (mm) - Tangential displacement} \)

Figures

- **Figure 1**: Diagram showing \(u_s \) and \(t \) with \(\tau_s \) and \(\sigma_{no} \) indicated.
- **Figure 2**: Graph plotting \(\tau_s \) vs. \(u_s \) with different lines for \(\frac{1}{t} \) values.
- **Figure 3**: Graph showing \(\sigma_{no} \) effect on \(\tau_s \).

Table

- **Parameter Table**:
 - | Observation | \(t \) | Controlling parameters |
 - |---------------------------|-------------|---|
 - | Quasi-steady state | Shifting for lower \(u_s \) | \(r(\dot{u}_d^p) = \dot{r}^{ed} + \frac{\dot{u}_d^p}{\dot{\theta} + \dot{u}_d^p} \) |
 - | Dilatancy at the critical state | Reduction | \(\sigma_c = \sigma_{co} \exp(\beta \dot{u}_d^p) \) |
 - | Elasticity | Domain reduction | \(G_{1}^{\uparrow} = \frac{G}{t} \) |
 - | Friction angle at the critical state | Unaffected | -- |
III – Interface behavior

Simulation of Direct Shear Test

- Boundary conditions, CV, CNS, CNL
- Initial normal stress, σ_{no}
- Initial relative density
- Type of loading
- Interface layer thickness, t
- Normalized roughness, R_n

\[R_n = \frac{R_t}{D_{50}} \]
[Uesugi & Kishida 1986]

Contraction / Dilation at the interface zone due to shearing
III – Interface behavior

Calibration of ECP interface model

- Normalized roughness, R_n, (calibration)

\[
\frac{d\sigma_n}{du_n} \neq 0
\]

CNS shear test $k=1000\text{kPa/mm}$

Experimental Data from Fioravante [2002]
Calibration of ECP interface model

- Normalized roughness, R_n, (calibration)

R_n
- Affects the failure mode:
 - $R_n < R_{n \text{ crit smooth}}$ ($\phi_{\text{int}} << \phi_{\text{soil}}$)
 - $R_n > R_{n \text{ crit rough}}$ ($\phi_{\text{int}} = \phi_{\text{soil}}$)

FEM model

CNS shear test $k=1000\text{kPa/mm}$

Experimental Data from Fioravante [2002]

Simulation
Short Outline

I - Introduction
II - Theory and Numerical modeling
III - Soil-Structure Interface behavior
IV - Non-displacement Piles in Toyoura sand
 • Validation with physical models
 • Soil-Pile interaction: parametric studies
 • Cyclic loading at constant force
V - ISC’2 Experimental site
VI - Final remarks
Centrifuge tests

• Static load test

- Tested sand: Toyoura
- Installation method: Non-displacement (in store before sand pluviation)
- Applied Load: Compression
- Soil density: $D R \approx 93\%$
- Roughness: $R_n = 0.01$ and 0.45
- Prototype: $L = 7.4\, \text{m}; D = 0.3\, \text{m}$
- Acceleration: 50g, 30g

[Fioravante 2002]
IV – Non-Displacement Piles

Toyoura sand

• Soil parameters calibration:
 (ECP multimechanism model)

<table>
<thead>
<tr>
<th>Sand</th>
<th>γ_{min} [kN/m3]</th>
<th>γ_{min} [kN/m3]</th>
<th>e_{max} [-]</th>
<th>e_{min} [-]</th>
<th>G_s [-]</th>
<th>D_{50} [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyoura</td>
<td>13.1</td>
<td>16.2</td>
<td>0.977</td>
<td>0.605</td>
<td>2.64</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Drained triaxial test
(p'_o=100kPa)

TS40 (Dr=40%)
TS90 (Dr=93%)

Fukushima and Tatsuoka [1984]
IV – Non-Displacement Piles

Numerical model

• Model and boundary conditions:

SAME SIZE AS PROTOTYPE
Load settlement response

\[Q_T = Q_s + Q_b \]

IV – Non-Displacement Piles

Validation with experimental results (1/2)

Expressions:
- \(Q_s \) - Shaft resistance
- \(Q_b \) - Base resistance

Parameters:
- \(s \) – pile head displacement
- \(d \) – pile diameter

- Rough, \(R_n = 0.45 \)
- Smooth, \(R_n = 0.01 \)

Experimental Data from Fioravante [2002]

Simulation

Reduction of \(R_n \): reduction of \(Q_s \rightarrow Q_T \)
IV – Non-Displacement Piles

Validation: Load Transfer mechanisms

Rough, smooth interface stress paths: Simulation

Control points:
- 1.7m
- 3.4m
- 6.0m

Graphs showing load transfer mechanisms for rough and smooth interfaces.
Load transfer coefficient \((\beta = \frac{\tau}{\sigma_v}) \)

\(R_n = 0.45 \) (Rough interface)

\[\tau = \beta \cdot \sigma_v \]

Validation with experimental results (2/2)

IV – Non-Displacement Piles

![Graph showing experimental data and simulation results](image)
Load transfer coefficient ($\beta = \tau / \sigma_{v0}$)

$R_n = 0.45$ (Rough interface)

β decreasing with depth:
- progressive inhibition of dilatancy
- Increase in ambient stress

Final local β (τ / σ_{v0})

Control points:
- 0.9m
- 2.9m
- 4.6m
- 6.4m

[Experimental results: Fioravante 2002]
Critical state approach

Importance of the soil initial state parameter?

- Regarding the interface roughness
- Regarding the pile length
- Regarding the type of loading
- Pile resistance for a soil with previous loading history

State parameter: p_0/p_{co}
Rough soil-pile interface:
Toyoura sand: different initial states, TS24, 40, 93

Q_s - Shaft resistance

Q_b - Base resistance
IV – Non-Displacement Piles

Influence of soil initial state

Rough soil-pile interface:

1) Different initial states, TS\(24, 40, 93\)
2) Initial stress: \(z=1.61\)

![Graph showing control points and soil behavior](image)

<table>
<thead>
<tr>
<th>TS24</th>
<th>TS40</th>
<th>TS93</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{co(TS24)})</td>
<td>(p_{co(TS40)})</td>
<td>(p_{co(TS93)})</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphs showing stress vs. normalized length for different initial states:

- TS24
- TS40
- TS93

Headings:

- I
- II
- III
- IV
- V
- VI

Footnote:

- \(z= 1.61\) m
Rough soil-pile interface:

1) Different initial states, TS24, 40, 93
2) Different initial stress

Final local load transfer coefficient: $\beta = \tau / \sigma_{vo}$
IV – Non-Displacement Piles

Parametric studies

Influence of:
- Soil initial state
- Pile-soil surface roughness
- Pile length

In:
- Shaft resistance
- Base resistance

Average load transfer coefficient: β_{avg}

$$\beta_{\text{avg}} = \frac{Q_s}{\left(A_s \sigma_{v_0 \text{ avg}} \right)}$$

TS24, 40, 93
IV – Non-Displacement Piles

Parametric studies

Influence of:
- Soil initial state
- Pile-soil surface roughness
- Pile length

In:
- Shaft resistance
- Base resistance

Average load transfer coefficient: β_{avg}

$\beta_{avg} = \frac{Q_s}{(A_s \sigma_{vo \ avg})}$

Smooth interface:
No soil-pile interaction

TS24, 40, 93
IV – Non-Displacement Piles

Parametric studies

Influence of:

- Soil initial state
- Pile-soil surface roughness
- Pile length

In:

- Shaft resistance
- Base resistance

End bearing capacity factor: N^*q

$N_q = \frac{q_b}{\sigma_v}$

TS 24, 40, 93
Cyclic Load transfer Mechanisms

Motivation:
Reduction of radial and shear stress during pile penetration
Linked to: cyclic stress history

Main issue:
Identify the main mechanisms controlling friction fatigue

Key issues:
- Effect of the load level (5 amplitudes)
- Effect of the number of cycles
- Effect of cycling in subsequent reload to failure
Cyclic Load transfer Mechanisms

Effect of the load level:

- **Reduction of shaft resistance** with N;
- Progressive increase of the permanent settlement (s);
- Progressive mobilization of base resistance;
- Different levels of residual loads.

![Graphs showing Q_s - Shaft resistance and Q_b - Base resistance with various load levels.](image)
Cyclic Load transfer Mechanisms

Analysis of volume changes in the soil:

(N=5, Q_T =1300 kN)

Mechanism 1
Cyclic Load transfer Mechanisms

Analysis of volume changes in the soil:

Mechanism 2

(N=5, $Q_T = 400$ kN)
Analysis of volume changes in the soil:

(N=5, $Q_T = 200$ kN)

Mechanism 3
Cyclic Load transfer Mechanisms

In reload: soil-pile system improved with the **previous** application of **cycling**?

- shaft resistance

State after cycling (z=-4.4 m)

Q_s - Shaft resistance

Q_b - Base resistance
Cyclic Load transfer Mechanisms

Is the soil-pile system improved with the previous application of cycling?

- **Shaft** may not recover
- **Base** can be **improved**;
- **Total resistance** **beneficiates** from previous cycling at large load amplitude;
- **Friction fatigue**: compensated by the base mobilization during cycling

Q_s - Shaft resistance

Q_T - Total resistance

Q_b - Base resistance
Short Outline

I - Introduction
II - Theory and Numerical modeling
III - Soil-Structure Interface behavior
IV - Non-displacement Piles in Toyoura sand

V - ISC’2 Experimental site
 • ISC’2 Site description
 • Residual soil modeling
 • Static load test
 • Dynamic load test

VI - Final remarks
Used data

- **2nd International Conference on Site Characterization - University of Porto, Portugal**

International Prediction Event on the Behavior of Bored, CFA and Driven Piles

Viana da Fonseca et al. (2004)

- **Static and Dynamic Load tests**
 - Bored Piles
 - CFA Piles
 - Driven Piles

- **in situ tests**
 - SPT, CPT, DMT, PMT, CH

- **Laboratory tests**
 - Triaxial compression, extension; Resonant column and oedometer

Used to calibrate soil model’s parameters

(D’Aguiar (2008))
Residual soil modeling

Laboratory tests carried out in undisturbed samples:
Triaxial tests

<table>
<thead>
<tr>
<th>Specimen</th>
<th>S2/1</th>
<th>S2/5</th>
<th>S2/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>3.2</td>
<td>5.5</td>
<td>7.0</td>
</tr>
<tr>
<td>S_r (%)</td>
<td>62</td>
<td>86</td>
<td>81</td>
</tr>
<tr>
<td>σ_{cv}</td>
<td>60</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>σ_{ch}</td>
<td>30</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>

$\phi'_p = 32^\circ$
$K_0 = 0.5$

experimental

simulation
Residual soil modeling

Laboratory tests

<table>
<thead>
<tr>
<th>Specimen</th>
<th>S5/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>6.3</td>
</tr>
<tr>
<td>γ (kN/m2)</td>
<td>17.8</td>
</tr>
<tr>
<td>e</td>
<td>0.818</td>
</tr>
<tr>
<td>S_r (%)</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>S5/1</th>
<th>S5/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>S_r (%)</td>
<td>74</td>
<td>80</td>
</tr>
<tr>
<td>σ_{cv}</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>σ_{ch}</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

Oedometer test column test

Resonant column test simulated with drained cyclic shear test
Static Load Tests

- Static load: Bored and CFA Pile (E9 and T1)
 - Assumed hypothesis:
 - no modeling of installation effects
 - Rough interface

Bored pile (E9)

- Bored Pile: E=20GPa

CFA pile (T1)

- CFA Pile: E=40GPa
Static Load Tests

- Static load: Bored and CFA Pile (E9 and T1):

 Load distribution along depth

Bored pile E9

CFA pile T1

Pile Axial Load (N) distribution along depth

Pile instrumentation
Dynamic load test modelling

• Different simulations

Drop height: h_1

Wave propagation

Drop hammer

Soil

Pile

Blow 1

Simulation 1

Independent blow simulation

Blow 2

Simulation 2

Blow 3

Simulation 3

Blow 4

Simulation 4

Sequentially applied blow simulation

I II III IV V VI
Dynamic load test records

• Forcing functions

Forces at the pile head for the DLT, bored pile (E9)

Drop hammer: 80kN

<table>
<thead>
<tr>
<th>Blow</th>
<th>Fall height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Fall heights for bored pile (E9)
Independent blow simulation

- Velocities at the pile head

![Graphs showing measured and computed velocities for different blows](image-url)
Sequentially applied blows simulation

- Complete load history ("pre-blow" + blow 1, 2, 3 and 4)
- Consistency of the dynamic load tests results

Velocity at the pile head

- Measured
- Computed
• Influence of the loading history in each blow response ("pre-blow" + blow 1 / blow 1)

Sequently applied blows simulation

- Seq. ("pre-blow" + blow 1)
- Indp. (blow 1)

Velocity at the pile head

Q_s - shaft resistance

Q_b - base resistance
Short Outline

I - Introduction
II - Theory and Numerical modeling
III - Soil-Structure Interface behavior
IV - Non-displacement Piles in Toyoura sand
V - ISC’2 Experimental site
VI - Conclusions and further research
• **The main issue:** 3D non-linear numerical modelling of soil-pile load transfer mechanisms of non-displacement piles axially loaded

• **The base of the work:**
 - Field observations
 - Computer simulations
 - Laboratory experimental tests

• **Aiming** to include the main **physical constraints** of the soil-pile interaction problem in a FEM model

adapted from Barends [2005]
VI – Conclusions and further research

Conclusions

• Spoted key aspects:
 – Soil-pile surface normalized roughness
 – Similitude between soil and soil-structure interface
 – Soil initial state
 – Soil loading history

• Allowing:
 – The validation of a complex model but sufficiently flexible and adapted to real case studies
 – Gained important insight, even if qualitative, concerning installation effects

• However:
 – Parameters identification
Further research

• Soil-Structure interface model:
 – More validations for cyclic loading and different soils;

• Water presence (coupled hydromechanical simulations):
 – Soil model is adapted;
 – Adapt the interface model;
 – Validations;

• Installation effects of displacement piles
Thank you …
Appendix
Concluding Remarks

- The GEFDYN FEM code
 - Enhanced:
 - 3D Axisymmetric formulation of the 3D ECP soil model (Hujeux model)
 - 3D interface model based on the critical state concept
 - Validated:
 - With other published numerical results
Concluding Remarks

Soil-Structure interface behavior:

- **3D ECP Interface model**
 - **Validated** with laboratory CNS shear test
 - **Correctly captures:**
 - Contractancy/dilatancy
 - Influence of normal stress
 - Coupling of shear and normal displacements
 - Critical state

- **Advantage of the 3D ECP interface:**
 - Same physical principles of the ECP soil model

- **Inconveniences of the 3D ECP interface:**
 - Large number of parameters

- **Coherent strategy for parameters’ identification**

- **Flexibility** in application
Concluding Remarks

Newly implemented model:
- Adapted for pile applications
- Validated with centrifuge test results (non-displacement piles)
- Flexible application to different soil-pile interface conditions

Parametric studies in Toyoura sand:
- Spot the key features of soil-pile interaction
 - normalized roughness
 - soil initial state
- Proposal of β and N_q parameters

Friction fatigue:
- Three different cyclic mechanisms control the rate of friction degradation
 - Related to the state parameter
 - Amplitude of the first load cycle
 - Number of cycles
- Soil memory in the reload resistance (parallel with installation effects)
Concluding Remarks

ISC’2 Experimental site: non-displacement piles

- **Consistent results** compared with *in-situ* static load tests results (bored and CFA piles)

- **Consistency** of the modeling based on:
 - Non linear behavior of:
 - Soil
 - Interface
 - Important work in parameters identification
 - Correct assumption of soil-pile interface (*rough interface*)

- **Compared performance** of bored and CFA piles

- Estimation of CFA pile **residual loads**
Employed and developed Tools

- **Comparison between Multimechanism and ECP interface models:**

<table>
<thead>
<tr>
<th>Multimechanisms</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity</td>
<td></td>
</tr>
<tr>
<td>$K_{\text{max}} = K_{\text{ref}} \left(\frac{p'}{p_{\text{ref}}} \right)^{n_e}$</td>
<td>$E_{\text{max}} = E_{\text{ref}} \left(\frac{\sigma'{\text{in}}}{\sigma{\text{ref}}} \right)^{n_e}$</td>
</tr>
<tr>
<td>$G_{\text{max}} = G_{\text{ref}} \left(\frac{p'}{p_{\text{ref}}} \right)^{n_e}$</td>
<td>$G_{\text{max}} = G_{\text{ref}} \left(\frac{\sigma'{\text{in}}}{\sigma{\text{ref}}} \right)^{n_e}$</td>
</tr>
<tr>
<td>Yielding Function</td>
<td></td>
</tr>
<tr>
<td>$q_k - \sin \phi_{\text{pp}}' p_k' F_k$ if $r_k \leq 0$</td>
<td>$</td>
</tr>
<tr>
<td>$F_k = 1 - b \ln \left(\frac{p_k'}{p_c} \right)$</td>
<td>$F = 1 - b \ln \left(\frac{\sigma'{\text{in}}}{\sigma{\text{in}}} \right)$</td>
</tr>
<tr>
<td>$p_c = p_{\text{co}} \exp(\beta \cdot \varepsilon'_{v})$</td>
<td>$\sigma_{\text{c}} = \sigma_{\text{co}} \exp(\beta \cdot \varepsilon_{\text{u}})$</td>
</tr>
<tr>
<td>$r_k = \varepsilon'{v} + \varepsilon'{v} F_k$</td>
<td>$r(\varepsilon_{\text{u}}) = \varepsilon_{\text{u}} + \frac{\varepsilon_{\text{u}}}{a + b \varepsilon_{\text{u}}}$</td>
</tr>
<tr>
<td>$a = a_1 + (a_2 - a_1) \alpha_k(r_k)$</td>
<td>$a = a_1 + (a_2 - a_1) \alpha(\varepsilon_{\text{u}})$</td>
</tr>
</tbody>
</table>

Multimechanisms

- $\varepsilon'_{v} = \lambda'_{v} \Psi_{v}$
- $\Psi_{v} = \alpha_{v} \alpha_{k}(r_k) \left(\sin \psi - \frac{q_k}{p_k} \right)$
- if $r_{\text{clas}} < r_k < r_{\text{hys}}$
 - $\alpha_k(r_k) = 0$
- if $r_{\text{hys}} < r_k < r_{\text{mob}}$
 - $\alpha_k(r_k) = \left(\frac{r_k - r_{\text{hys}}}{r_{\text{mob}} - r_{\text{hys}}} \right)^m$
- if $r_{\text{mob}} < r_k < 1$
 - $\alpha_k(r_k) = 1$

Interface

- $\varepsilon'_{n} = \lambda'_{p} \Psi_{n}$
- $\Psi_{n} = \alpha_{v} \alpha(r) \left(\tan \psi - \frac{r}{\sigma_{\text{in}}} \right)$
- if $r_{\text{clas}} < r < r_{\text{hys}}$
 - $\alpha(r) = 0$
- if $r_{\text{hys}} < r < r_{\text{mob}}$
 - $\alpha = \left(\frac{r - r_{\text{hys}}}{r_{\text{mob}} - r_{\text{hys}}} \right)^m$
- if $r_{\text{mob}} < r < 1$
 - $\alpha(r) = 1$

Isotropic Mechanism

- $f_{\text{iso}} = |p| - d \cdot p_c \cdot r_{\text{iso}}$
- $r_{\text{iso}} = \gamma_{\text{iso}} + \frac{\varepsilon'_{v} \cdot r_{\text{iso}}}{p_{\text{ref}} \cdot \varepsilon'_{v} \cdot r_{\text{iso}}}$
Employed and developed Tools

- **ECP elastoplastic Constitutive models:**

Parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>Elasticity</th>
<th>Yield Function</th>
<th>Hardening</th>
<th>Threshold Domains</th>
<th>Initial State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimechanism</td>
<td>K_{ref}, G_{ref}, n_e, ρ_{ref}</td>
<td>ϕ'_p, β, b, d</td>
<td>$a_1, a_2, \psi, \alpha_p, m, c_1, c_2$</td>
<td>$r^{\text{ela}}, r^{\text{hys}}, r^{\text{mob}}, r^{\text{is}}$</td>
<td>p_{co}</td>
</tr>
<tr>
<td>Interface</td>
<td>E_{ref}, G_{ref}, n_e, σ_{ref}</td>
<td>ϕ'_p, β, b</td>
<td>$a_1, a_2, \psi, \alpha_p, m$</td>
<td>$r^{\text{ela}}, r^{\text{hys}}$</td>
<td>r^{mob}</td>
</tr>
</tbody>
</table>
Employed and developed Tools

<table>
<thead>
<tr>
<th>Multiméchanism</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity</td>
<td></td>
</tr>
<tr>
<td>$K_{max} = K_{ref} \left(\frac{p'}{p'_{ref}}\right)^{n_e}$</td>
<td>$E_{max} = E_{ref} \left(\frac{\sigma'n}{\sigma'{ref}}\right)^{n_e}$</td>
</tr>
<tr>
<td>$G_{max} = G_{ref} \left(\frac{p'}{p'_{ref}}\right)^{n_e}$</td>
<td>$G_{max} = G_{ref} \left(\frac{\sigma'n}{\sigma'{ref}}\right)^{n_e}$</td>
</tr>
<tr>
<td>Yielding function</td>
<td></td>
</tr>
<tr>
<td>$q_k - \sin \phi'_p p'_k F_k r_k \leq 0$</td>
<td>$</td>
</tr>
<tr>
<td>Volumetric hardening</td>
<td></td>
</tr>
<tr>
<td>$F_k = 1 - b \ln \left(\frac{r'_k}{p'_c}\right)$</td>
<td>$F = 1 - b \ln \left(\frac{\sigma'_n}{\sigma'_c}\right)$</td>
</tr>
<tr>
<td>$p'c = p'{co} \exp(\beta \varepsilon''_{v_k})$</td>
<td>$\sigma'c = \sigma'{co} \exp(\beta u''_{p_n})$</td>
</tr>
<tr>
<td>Deviatoric hardening</td>
<td></td>
</tr>
<tr>
<td>$r'k = r^{el}k + \frac{\varepsilon''{p_k}}{a + \varepsilon''{p_k}}$</td>
<td>$r(u''{p_n}) = r^{el} + \frac{u''{p_n}}{u'n + u''{p_n}}$</td>
</tr>
<tr>
<td>Plastic potential</td>
<td></td>
</tr>
<tr>
<td>$\dot{\varepsilon''{v_k}} = \dot{\lambda}'{k} \Psi'_v$</td>
<td>$\dot{u''{p_n}} = \dot{\lambda}'{p} \Psi'_n$</td>
</tr>
<tr>
<td>$\Psi'{v} = \alpha{psi} \alpha_k(r'_k) \left(\sin \psi - \frac{q_k}{p'_k}\right)$</td>
<td>$\Psi'n = \alpha{psi} \alpha(r) \left(\tan \psi - \frac{\tau}{\sigma'_n}\right)$</td>
</tr>
<tr>
<td>Behavior domains</td>
<td></td>
</tr>
<tr>
<td>if $r'_k < r^{hys}$</td>
<td>$\alpha_k(r'_k) = 0$</td>
</tr>
<tr>
<td>if $r^{hys} < r'_k < 1$</td>
<td>$\alpha_k(r'_k) = \left(\frac{r'_k - r^{hys}}{r'k - r^{hys}{mob}}\right)^m$</td>
</tr>
<tr>
<td>if $r^{hys} < r'_k < 1$</td>
<td>$\alpha_k(r'_k) = 1$</td>
</tr>
<tr>
<td>Isotropic mechanism</td>
<td></td>
</tr>
<tr>
<td>$f_{iso}' =</td>
<td>p'{v_k} - d{p_c} r_{iso}</td>
</tr>
<tr>
<td>$r'{iso} = r^{el}{iso} + \frac{\varepsilon''{p{iso}}}{p_{iso} + \varepsilon''{p{iso}}}$</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon''{v{iso}} = \sum_{k=1}^{3} \left(\varepsilon''{v_k} + \varepsilon''{p_{iso}}\right)$</td>
<td></td>
</tr>
</tbody>
</table>
II – Theory and Numerical modeling

Employed and developed Tools

- **3D Axisymmetric formulation of the ECP multimechanisms model:**

3D CV shear test (axisymmetric conditions)
Numerical Validation

- **GEFDYN FEM code for pile applications**
 - Soil: Mohr-Coulomb model
 - Interface: Mohr-Coulomb model
 - FEM codes: ABAQUS and CESAR (LCPC)

Case 1

- Trochanics [1991]

Case 2

- Neves et al. [2001]

Graphs showing load vs. settlement for different cases, comparing ABAQUS and GEFDYN results.
Simulation of Direct Shear Test

III – Interface behavior

- Boundary conditions and model

Case 1: CNL
Case 2: CV
Case 3: CNS
III – Interface behavior

Simulation of Direct Shear Test

(a) Simulation of shear stress τ_s (kPa) vs. displacement u_s (mm) for $K=0$ and $K=\infty$.

(b) Simulation of shear stress τ_s (kPa) vs. normal stress σ_n (kPa) for $K=0$ and $K=\infty$.

(c) Simulation of normal stress σ_n (kPa) vs. displacement u_n (mm) for $K=0$ and $K=\infty$.

(d) Simulation of normal stress σ_n (kPa) vs. displacement u_n (mm) for $K=0$ and $K=\infty$.

Legend: CNL, CV, CNS
Simulation of Direct Shear Test

III – Interface behavior

- CNL test
- Influence of interface thickness \((t)\)

\[
\dot{u}_t = \dot{\gamma}_t \cdot t
\]

\[
\dot{u}_n = \dot{\varepsilon}_v \cdot t
\]
Simulation of Direct Shear Test

- Parameters determination: CNL test
- Influence of interface thickness (t)

\[
\dot{u}_t = \dot{\gamma}_t \cdot t \\
\dot{u}_n = \dot{\varepsilon}_v \cdot t
\]
Simulation of Direct Shear Test

• Parameters determination: **CNL test**
• influence of interface thickness \((t)\)

\[
G^* = G_{\text{soil}} \frac{t}{t}
\]
IV – Non-Displacement Piles

Parametric studies

Influence of:
- Soil initial state
- Pile-soil surface roughness
- Pile length

In:
- Shaft resistance
- Base resistance

Average load transfer coefficient: β_{avg}

$\beta_{avg} = \frac{Q_s}{(A_s \cdot \sigma_{vo avg})}$

Smooth interface:
No soil-pile interaction

$TS24, 40, 93$
IV – Non-Displacement Piles

Parametric studies

Pile length

Local load transfer coefficient: β

$\beta = \tau/\sigma_v$
Increasing number of cycles for mechanism 2

Reduction of the maximum resistance

Total Load
Cyclic Load transfer Mechanisms

Increasing number of cycles for mechanism 3

2 depths stress path

No stress \((\sigma_3=0)\)
IV – Non-Displacement Piles

Cyclic Load transfer Mechanisms

Increasing number of cycles for mechanism 1

(N=12, $Q_T = 200$ kN)
Compared performance of bored and CFA piles (E9 and T1):

- **Bored – E9**
 - Measured resistance
 - Simulated base resistance

- **CFA – T1**
 - Measured resistance
 - Simulated base resistance
Estimation of residual loads: **CFA pile**

- **Two steps modeling:**
 1) Base pre-loading with $s/d=5$
 2) Load removal → residual loads locked-in soil state modification

Calculation 1: load+unload

Static Load Tests
Estimation of residual loads: CFA pile

Residual load = 76 kN

- Experimental Static load test
- Simulated: load + unload
- Simulated: reload after load + unload

Q_b - Base resistance

$Q_b = 76.4$ kN
Dynamic Load test

Drop height: h

Wave propagation

$V(t)$

Δx

Δt

$L \cdot c$

Wave refraction

$c = \frac{\Delta x}{\Delta t} = \sqrt{\frac{E}{\rho}}$

$F = Z \cdot v$

$Z = \frac{E \cdot A}{c}$

F, Force
v, velocity
Z, impendancy
Independent blows simulation

- Comparison between static and dynamic load tests
- Resistance mobilization – load settlement results

\[Q_T = Q_s + Q_b \]
Sequentially applied blows

- Complete load history ("pre-blow" + blow 1,2,3 and 4)
- Load settlement response

\[Q_T = Q_s + Q_b \]
Resistance after dynamic test

- Influence of the soil state and loading history: application of dynamic load modifies the pile static resistance

Simulation 1: “Virgin SLT”
Static load test from initial stress field
STATIC LOAD TEST

Simulation 2: “After DLT”
Static reload from stress field generated in the DLT
DYNAMIC LOAD TEST + STATIC LOAD TEST